If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.6t-4.9t^2=0
a = -4.9; b = 4.6; c = 0;
Δ = b2-4ac
Δ = 4.62-4·(-4.9)·0
Δ = 21.16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4.6)-\sqrt{21.16}}{2*-4.9}=\frac{-4.6-\sqrt{21.16}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4.6)+\sqrt{21.16}}{2*-4.9}=\frac{-4.6+\sqrt{21.16}}{-9.8} $
| |x/2-2|=6 | | 2b-0.7=3b | | x+40+60x=180 | | 9/10=4/y-2 | | 2(u+8)=18 | | v/3-14=-1 | | 2/x-6=10 | | -186=-65-11x | | 10x=(6x+5) | | 63+16m=91 | | v/3-14=11 | | -3=5(x+3) | | 131=-5x+3(-3x-3) | | 0.8x+5=0.29(40-x) | | -19=n-8 | | 8y+2=2Y-10 | | -2=-5t+10+2 | | 9p-10=7p-2 | | 1=m/12 | | 38=x/4+15 | | (x/2)+(1/2)=(3/8) | | 8n+5=10 | | X+41+x78=95 | | 5x+30x-8=7(5x+6) | | -2/3x+11=7 | | 9-r/2=-2 | | 3x=5=10x-7 | | 5x/3=-8 | | x2-7x= | | -(8-3n)=-8+3n | | x/(7/2)=1/7 | | 1/9(2m-16=1/3(2m-4) |